Abstract
The developing of deep learning systems that used for chronic diseases diagnosing is challenge. Furthermore, the localization and identification of objects like white blood cells (WBCs) in leukemia without preprocessing or traditional hand segmentation of cells is a challenging matter due to irregular and distorted of nucleus. This paper proposed a system for computer-aided detection depend completely on deep learning with three models computer-aided detection (CAD3) to detect and classify three types of WBC which is fundamentals of leukemia diagnosing. The system used modified you only look once (YOLO v2) algorithm and convolutional neural network (CNN). The proposed system trained and evaluated on dataset created and prepared specially for the addressed problem without any traditional segmentation or preprocessing on microscopic images. The study proved that dividing of addressed problem into sub-problems will achieve better performance and accuracy. Furthermore, the results show that the CAD3 achieved an average precision (AP) up to 96% in the detection of leukocytes and accuracy 94.3% in leukocytes classification. Moreover, the CAD3 gives report contain a complete information of WBC. Finally, the CAD3 proved its efficiency on the other dataset such as acute lymphoblastic leukemia image database (ALL-IBD1) and blood cell count dataset (BCCD).
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献