Author:
Ali Haseeb,Mohd Salleh Mohd Najib,Saedudin Rohmat,Hussain Kashif,Mushtaq Muhammad Faheem
Abstract
<span>The imbalanced data problems in data mining are common nowadays, which occur due to skewed nature of data. These problems impact the classification process negatively in machine learning process. In such problems, classes have different ratios of specimens in which a large number of specimens belong to one class and the other class has fewer specimens that is usually an essential class, but unfortunately misclassified by many classifiers. So far, significant research is performed to address the imbalanced data problems by implementing different techniques and approaches. In this research, a comprehensive survey is performed to identify the challenges of handling imbalanced class problems during classification process using machine learning algorithms. We discuss the issues of classifiers which endorse bias for majority class and ignore the minority class. Furthermore, the viable solutions and potential future directions are provided to handle the problems<em>.</em></span>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献