Hexagonal two layers-photonics crystal fiber based on surface plasmon resonance with gold coating biosensor easy to fabricate

Author:

Irawan DediORCID,Ramadhan KhaikalORCID,Saktioto SaktiotoORCID,Fitmawati FitmawatiORCID,Hanto DwiORCID,Widiyatmoko BambangORCID

Abstract

<span>In this paper, we investigate a hexagonal two-layer photonic crystal fiber based on surface plasmon resonance (HT-PCF-SPR) which is easy to fabricate as a sensor for detecting the refractive index of analytes. After performing numerical simulations using COMSOL multiphysics based on the finite element method (FEM), it was found that the HT-PCF-SPR could detect the analyte's refractive index in the range 1.34-1.37 RIU and in the wavelength range from 730 nm to 810 nm. The plasmonic material used in the design is gold with a thickness of 40 nm which is located outside the layer and in two opposite air holes in the core. The HT-PCF-SPR design has good performance in detecting analytes, it is found that the sensitivity in detecting analytes is 2,000 nm/RIU, meaning that every 1 RIU shift of analyte shifts the wavelength by 2000 nm. Meanwhile, the sensor resolution obtained from the design is 6.67×10-5 RIU, and it is found that the larger the air hole, the greater the confinement loss value.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Photonic Crystal Fiber with a rectangular core using Comsol;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

2. Revolutionizing Air Pollution Detection with PCF-SPR Refractive Index Sensor;2023 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD);2023-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3