Reliability-based routing metric for UAVs networks

Author:

Jasim Musaab MohammedORCID,AL-Qaysi Hayder Khaleel,Allbadi Yousif

Abstract

<span>As a result of technological advances in robotic systems, electronic sensors, and communication techniques, the production of unmanned aerial vehicle (UAV) systems has become possible. Their easy installation and flexibility led these UAV systems to be used widely in both military and civilian applications. Note that the capability of one UAV is however limited. Nowadays, a multi-UAV system is of special interest due to the ability of its associate UAV members either to coordinate simultaneous coverage of large areas or to cooperate to achieve common goals/targets. This kind of cooperation/coordination requires a reliable communication network with a proper network model to ensure the exchange of both control and data packets among UAVs. Such network models should provide all-time connectivity to avoid dangerous failures or unintended consequences. Thus, the multi-UAV system relies on communication to operate. Flying ad hoc network (FANET) is moreover considered as a sophisticated type of wireless ad hoc network among UAVs which solved the communication problems into other network models. Along with the FANET’s unique features, challenges and open issues are also discussed especially in the routing protocols approach. We will try to present the expected transmission account metric with a new algorithm for reliability. In addition to this new algorithm mechanism, the metric takes into account the relative speed between UAVs, and thus the increase of the fluctuations in links between UAVs has been detected. Accordingly, the results show that the function of the AODV routing protocol with this metric becomes effective in high mobility environments.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Destination sequenced distance vector routing taking into account signal to noise for flying ad hoc network;Vietnam Journal of Science and Technology;2024-08-02

2. Comprehensive Review of Drones Collision Avoidance Schemes: Challenges and Open Issues;IEEE Transactions on Intelligent Transportation Systems;2024-07

3. A Network Optimized 3D Intercom Approach For UAV Communication Using 6G Network;2023 International Conference on Intelligent Technologies for Sustainable Electric and Communications Systems (iTech SECOM);2023-12-18

4. An Optimization Mechanism of Routing Protocol for Integrated CISR Networks;2023 9th International Conference on Computer and Communications (ICCC);2023-12-08

5. Edge-based Sensors Network for Critical Object Monitoring: Reliability Models Considering the Location of Failed Sensors;2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT);2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3