Enhancement in data security and integrity using minhash technique

Author:

Abed Sa'edORCID,Waleed Lamis,Aldamkhi Ghadeer,Hadi Khaled

Abstract

Data <span>encryption process and key generation techniques protect sensitive data against any various attacks. This paper focuses on generating secured cipher keys to raise the level of security and the speed of the data integrity checking by using the MinHash function. The methodology is based on applying the cryptographic algorithms rivest-shamir-adleman (RSA) and advanced encryption standard (AES) to generate the cipher keys. These keys are used in the encryption/decryption process by utilizing the Pearson Hash and the MinHash techniques. The data is divided into shingles that are used in the Hash function to generate integers and in the MinHash function to generate the public and the private keys. MinHash technique is used to check the data integrity by comparing the sender’s and the receiver’s encrypted digest. The experimental results show that the RSA and AES algorithms based on the MinHash function have less encryption time compared to the normal hash functions by 17.35% and 43.93%, respectively. The data integrity between two large sets is improved by 100% against the original algorithm in terms of completion time, and 77% for small/medium data and 100% for large set data in terms of memory utilization.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multilayer symmetric and asymmetric technique for audiovisual cryptography;Multimedia Tools and Applications;2023-09-16

2. Centy: Scalable Server-Side Web Integrity Verification System Based on Fuzzy Hashes;Detection of Intrusions and Malware, and Vulnerability Assessment;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3