A novel academic performance estimation model using two stage feature selection

Author:

Chaudhury Pamela,Tripathy Hrudaya Kumar

Abstract

<span lang="EN-GB">Educational data mining has gained tremendous interest from researchers across the globe. Using data mining techniques in the field of education several significant findings have been made. Accurate academic performance estimation is a challenging task. In this study we have developed a novel model to estimate the academic performance of students. Techniques like conversion of categorical attributes into dummy variables, classification, two staged feature selection and an improved differential evolutionary algorithm were used. Our proposed model outperformed existing models of students’ academic performance determination and gave a new direction to it. The proposed model can help not only to reduce the number of academic failures but also help to comprehend the factors contributing to a student’s  academic performance (poor, average or outstanding).Computer</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Random Forest and Support Vector Machine Models in Educational Data Mining;2024 2nd International Conference on Advancement in Computation &amp; Computer Technologies (InCACCT);2024-05-02

2. Predicting Students’ Performance Using Feature Selection-Based Machine Learning Technique;Lecture Notes in Networks and Systems;2024

3. Hybrid Data Science Approaches to Predict the Academic Performance of Students;Lecture Notes in Electrical Engineering;2024

4. Enhancing Student Success Prediction with FeatureX: A Fusion Voting Classifier Algorithm with Hybrid Feature Selection;Education and Information Technologies;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3