Crowd Anomaly Detection Using Motion Based Spatio-Temporal Feature Analysis
-
Published:2017-09-01
Issue:3
Volume:7
Page:737
-
ISSN:2502-4760
-
Container-title:Indonesian Journal of Electrical Engineering and Computer Science
-
language:
-
Short-container-title:IJEECS
Author:
G M Basavaraj,Kusagur Ashok
Abstract
<p>Recently, the demand for surveillance system is increasing in real time application to enhance the security system. These surveillance systems are mainly used in crowded places such as shopping malls, sports stadium etc. In order to support enhance the security system, crowd behavior analysis has been proven a significant technique which is used for crowd monitoring, visual surveillance etc. For crowd behavior analysis, motion analysis is a crucial task which can be achieved with the help of trajectories and tracking of objects. Various approaches have been proposed for crowd behavior analysis which has limitation for densely crowded scenarios, a new object entering the scene etc. In this work, we propose a new approach for abnormal crowd behavior detection. Proposed approach is a motion based spatio-temporal feature analysis technique which is capable of obtaining trajectories of each detected object. We also present a technique to carry out the evaluation of individual object and group of objects by considering relational descriptors based on their environmental context. Finally, a classification is carried out for detection of abnormal or normal crowd behavior by following patch based process. In the results, we have reported that proposed model is able to achieve better performance when compared to existing techniques in terms of classification accuracy, true positive rate, and false positive rate.</p>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Human Action Recognition in Video;Communications in Computer and Information Science;2018-12-12