Performance analysis of intrusion detection for deep learning model based on CSE‑CIC‑IDS2018 dataset

Author:

Farhan Baraa IsmaelORCID,Jasim Ammar D.ORCID

Abstract

<span>The evolution of the internet of things as a promising and modern technology has facilitated daily life. Its emergence was accompanied by challenges represented by its frequent exposure to attacks and its being a target for intruders who exploit the gaps in this technology in terms of the nature of its heterogeneous data and its large quantity. This made the study of cyber security an urgent necessity to monitor infrastructures It has network flaw detection and intrusion detection that helps protect the network by detecting attacks early and preventing them. As a result of advances in machine learning techniques, especially deep learning and its ability to self-learning and feature extraction with high accuracy, the research exploits deep learning to analyze the real data set of CSE-CIC-IDS2018 network traffic, which includes normal behavior and attacks, and evaluate our deep model long short-term memory (LSTM), That achieves accuracy of detection up to 99%.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3