Stand-alone PV system with MPPT function based on fuzzy logic control for remote building applications

Author:

Attia Hussain A.,Gonzalo Fernando DelAma

Abstract

<p align="LEFT"><span>Due to the limitations of reaching the grid utility to remote area, such as rural and/or countryside areas.  Stand-alone photovoltaic power systems represent good alternative that it can be adapted for electrical power delivering to these areas. In this paper, a new design of stand-alone solar system suitable for individual building application is presented. This study focuses on proposing a desired solar PV panels matrix arrangement and connection, in addition to presenting an accurate design of Buck-Boost DC-DC converter which controlled by fuzzy logic controller FLC. The controller guarantees the maximum Power Point working conditions and manipulates the fluctuation of the DC link voltage of the matrix due to the weather changing. The main system includes battery bank charger, single phase inverter, and passive power filter. This study addresses the design and performance analysis the DC side of the 7.85 kW PV system. The system performance is evaluated through MATLAB/Simulink results which reflected the promising indications as an effective system for rural individual stand-alone building applications. </span></p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of Different Standalone PV System Topologies Using Fuzzy Logic-Based MPPT Technique;2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC);2024-05-12

2. Design and Implementation of IoT System with Intelligent Solar Charger Controller;Lecture Notes in Networks and Systems;2024

3. Optimization of P&O Algorithm for Load Variation Scenario Through PV System Physical Model;Digital Technologies and Applications;2022

4. Standalone and Minigrid-Connected Solar Energy Systems for Rural Application in Rwanda: An In Situ Study;International Journal of Photoenergy;2021-10-05

5. Contribution of Water Flow Glazing to Net-Zero Energy Buildings;Practice, Progress, and Proficiency in Sustainability;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3