An efficient dynamic power management model for a stand-alone DC Microgrid using CPIHC technique

Author:

Sharmila N.,Nataraj K. R.,Rekha K. R.

Abstract

The power generation using solar photovoltaic (PV) system in microgrid requires energy storage system due to their dilute and intermittent nature. The system requires efficient control techniques to ensure the reliable operation of the microgrid. This work presents dynamic power management using a decentralized approach. The control techniques in microgrid including droop controllers in cascade with proportional-integral (PI) controllers for voltage stability and power balance have few limitations. PI controllers alone will not ensure microgrid’s stability. Their parameters cannot be optimized for varying demand and have a slow transient response which increases the settling time. The droop controllers have lower efficiency. The load power variation and steady-state voltage error make the droop control ineffective. This paper presents a control scheme for dynamic power management by incorporating the combined PI and hysteresis controller (CPIHC) technique. The system becomes robust, performs well under varying demand conditions, and shows a faster dynamic response. The proposed DC microgrid has solar PV as an energy source, a lead-acid battery as the energy storage system, constant and dynamic loads. The simulation results show the proposed CPIHC technique efficiently manages the dynamic power, regulates DC link voltage and battery’s state of charge (SoC) compared to conventional combined PI and droop controller (CPIDC).

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3