A family of switched-impedance network enhanced-boost quasi-Z-source inverters

Author:

Jagan Vadthya,Alpuri Mithun Kumar Reddy,Neeharika Mandava,Swetha Cheruku,Mahendar Pedekala,Das Sharmili

Abstract

This paper proposes a family of novel enhanced-boost quasi-Z-source inverters (EB-qZSIs). For the similar input voltage and shoot-through duty ratio, similar to that of enhanced-boost Z-source inverter/enhanced-boost qZSIs, the presented topologies provide very high voltage boost at high modulation index with improved quality output waveform. Compared to EB-ZSI and EB-qZSIs, these topologies provide less capacitors stress, which reduce the volume and cost of the system. Akin to traditional EB-qZSIs, the presented novel impedance networks share joint ground with the source and inverter bridge, also reduces the initial inrush current. Among the four types of proposed configurations, the type-1 of discontinuous input current (DIC) EB-qZSIs offers fewer stress athwart the capacitors and little inrush current at start-up condition. Consequently, type-1 is considered and illustrated for the examination, simulation, and hardware execution. The steady-state operation and derivation of boost factor, peak direct current-link (DC-link) voltage and capacitor voltages are derived for both continuous conduction mode (CCM) and discontinuous conduction modes (DCM). The Z-network elements design, and evaluation with other Z-networks are also carried out. Lastly, the hypothetical investigation is confirmed with simulation and experimental tests.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Switched-Capacitor Enhanced-Boost Quasi Z-Source Network;Transactions on Energy Systems and Engineering Applications;2023-11-24

2. A Superior Boost Active-Switched Impedance Network Quasi Z-Source Inverter;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

3. Voltage-lift Type Impedance-Network Improved-Z-Source Inverter;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

4. Active Switched-Network Modified Quasi-Z-Source Inverter;2022 IEEE 19th India Council International Conference (INDICON);2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3