Shunt Active Filter Based on Radial Basis Function Neural Network and p-q Power Theory

Author:

Ch. Tah Prakash,Panda Anup K.,P. Panigrahi Bibhu

Abstract

In this paper a new combination Radial Basis Function Neural Network and p-q Power Theory (RBFNN-PQ) proposed to control shunt active power filters (SAPF). The recommended system has better specifications in comparison with other control methods. In the proposed combination an RBF neural network is employed to extract compensation reference current when supply voltages are distorted and/or unbalance sinusoidal. In order to make the employed model much simpler and tighter an adaptive algorithm for RBF network is proposed. The proposed RBFNN filtering algorithm is based on efficient  training methods called hybrid learning method.The method  requires a small size network, very robust, and the proposed algorithms are very effective. Extensive simulations are carried out with PI as well as RBFNN controller for p-q control strategies by considering different voltage conditions and adequate results were presented.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3