Performance comparison of artificial intelligence techniques in short term current forecasting for photovoltaic system

Author:

Othman Muhammad Murtadha,Fazil Mohammad Fazrul Ashraf Mohd,Harun Mohd Hafez Hilmi,Musirin Ismail,Sulaiman Shahril Irwan

Abstract

<span>This paper presents artificial intelligence approach of artificial neural network (ANN) and random forest (RF) that used to perform short-term photovoltaic (PV) output current forecasting (STPCF) for the next 24-hours. The input data for ANN and RF is consists of multiple time lags of hourly solar irradiance, temperature, hour, power and current to determine the movement pattern of data that have been denoised by using wavelet decomposition. The Levenberg-Marquardt optimization technique is used as a back-propagation algorithm for ANN and the bagging based bootstrapping technique is used in the RF to improve the results of forecasting. The information of PV output current is obtained from Green Energy Research (GERC) University Technology Mara Shah Alam, Malaysia and is used as the case study in estimation of PV output current for the next 24-hours. The results have shown that both proposed techniques are able to perform forecasting of future hourly PV output current with less error.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random Forest (RF) with Daubechies Wavelet and Multiple Time Lags (MTL) for Solar Irradiance Forecasting;2023 IEEE 3rd International Conference in Power Engineering Applications (ICPEA);2023-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3