Closed loop control of DC-DC converters using PID and FOPID controllers

Author:

K Aseem,S Selva Kumar

Abstract

Fractional order controllers are nowadays used in various power electronic converters as it is giving superior control performance compared with conventional PID controllers. This paper presents the closed loop control of different DC-DC converters using PID controllers and Fractional Order PID (FOPID) controllers. The closed loop control of the basic converters such as buck, boost, buck-boost converters and dual input single output DC-DC converters were designed, modeled and analyzed using conventional PID controller and FOPID controllers. The performance of the controllers are compared in terms of the different time domain specifications like overshoot, rise time, settling time, etc. and simulated in MATLAB Simulink platform. For all types of the DC-DC converters, FOPID controller gives far better performance compared with conventional PID controllers.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractional Order PID Controller Incorporated Decoupled Control of Grid Connected Solar Photovoltaic System;Applied Solar Energy;2024-02

2. Closed Loop High Step-Up DC-DC Boost Converter with Coupled Inductor and Switched Capacitor;2023 IEEE Technology & Engineering Management Conference - Asia Pacific (TEMSCON-ASPAC);2023-12-14

3. Novel High-Gain Transformerless DC DC Converter Design and Closed Loop Analysis Using PI and FLC Approaches;2023 International Conference on Computational Intelligence for Information, Security and Communication Applications (CIISCA);2023-06-22

4. Boundary-Based PWM Control Scheme for a DC-DC Buck Converter Operating in CCM;Transactions on Energy Systems and Engineering Applications;2023-04-12

5. An Implementation of Sliding Mode Voltage Control Controlled Buck-Boost Converter for Solar Application;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3