Abstract
<span lang="EN-US">In a large, interconnected power system, contingency analysis is a useful tool for pinpointing the potential consequences of post-event scenarios on the system's safety. In this work, the Newton-Raphson technique is applied to every single outage of a transmission line to compute the load flows. For the static security classification of the power system, the line voltage stability performance index (LVSI) is used. There are three levels of static security of power system namely: non-critical (the least severe), semi-critically insecure (the next lowest severe), and critical (the next highest severe). The various data mining techniques such as decision trees, bagging-based ensemble methods, and boosting-based ensemble methods were applied to assess the severity of the line under various loading and contingency conditions. Test systems based on the IEEE 30 bus system were used with the proposed machine learning classifiers. The experimental results proved that bagging based ensemble method provided better accuracy compared to the decision tree and the AdaBoost ensemble method for predicting the power system security assessment. The bagging-based ensemble method has a predictive accuracy of 85% and an AUC of 0.94.</span>
Publisher
Institute of Advanced Engineering and Science
Subject
General Agricultural and Biological Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial Neural Network based FACTS in a Contingency Situation;International Journal of Electrical and Electronics Research;2024-01-15