A novel wavelet packet transform based fault identification procedures in HV transmission line based on current signals

Author:

Adly Ahmed R.,Sehiemy Ragab A. El,Elsadd Mahmoud A.,Abdelaziz Almoataz Y.

Abstract

<p>This paper presents an adaptive fault identification algorithm bases on wavelet packet transform (WPT) for two-terminal power transmission lines. The proposed scheme performs four functions which are the fault detection, fault classification, distinguishing among the temporary and the permanent faults, and detection of the arc extinguish instant. The presented algorithm only uses the measured current at one terminal reducing the required cost. Also, it can mitigate the error resulting from the load variations via updating the presetting value. Consequently, it does not need retesting under changing the transmission system configurations. The proposed scheme is deduced in the spectral domain and depended on the application of the WPT. The db6 wavelet packet is used for decomposing the faulty phase current waveform (level 7) to get the energy coefficients. The presented algorithm is assessed under various fault conditions such as fault distances, inception angles, and faults nature via simulating different secondary arc models via using ATP/EMTP. The obtained results are investigated and evaluated.</p>

Publisher

Institute of Advanced Engineering and Science

Subject

General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Scheme for Fault Detection in a Series Compensated Line Based on Wavelet Transform;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

2. Smart Technology Based Empirical Mode Decomposition (EMD) Approach for Autonomous Transmission Line Fault Detection Protection;EAI Endorsed Transactions on Energy Web;2022-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3