A Deep Learning Based Model to Assist Blind People in Their Navigation

Author:

Kumar Nitin1,jain Anuj1

Affiliation:

1. Lovely Professional University

Abstract

Aim/Purpose: This paper proposes a new approach to developing a deep learning-based prototyping wearable model which can assist blind and visually disabled people to recognize their environments and navigate through them. As a result, visually impaired people will be able to manage day-to-day activities and navigate through the world around them more easily. Background: In recent decades, the development of navigational devices has posed challenges for researchers to design smart guidance systems for visually impaired and blind individuals in navigating through known or unknown environments. Efforts need to be made to analyze the existing research from a historical perspective. Early studies of electronic travel aids should be integrated with the use of assistive technology-based artificial vision models for visually impaired persons. Methodology: This paper is an advancement of our previous research work, where we performed a sensor-based navigation system. In this research, the navigation of the visually disabled person is carried out with a vision-based 3D-designed wearable model and a vision-based smart stick. The wearable model used a neural network-based You Only Look Once (YOLO) algorithm to detect the course of the navigational path which is augmented by a GPS-based smart Stick. Over 100 images of each of the three classes, namely straight path, left path and right path, are being trained using supervised learning. The model accurately predicts a straight path with 79% mean average precision (mAP), the right path with 83% mAP, and the left path with 85% mAP. The average accuracy of the wearable model is 82.33% and that of the smart stick is 96.14% which combined gives an overall accuracy of 89.24%. Contribution: This research contributes to the design of a low-cost navigational standalone system that will be handy to use and help people to navigate safely in real-time scenarios. The challenging self-built dataset of various paths is generated and transfer learning is performed on the YOLO-v5 model after augmentation and manual annotation. To analyze and evaluate the model, various metrics, such as model losses, recall value, precision, and maP, are used. Findings: These were the main findings of the study: • To detect objects, the deep learning model uses a higher version of YOLO, i.e., a YOLOv5 detector, that may help those with visual im-pairments to improve their quality of navigational mobilities in known or unknown environments. • The developed standalone model has an option to be integrated into any other assistive applications like Electronic Travel Aids (ETAs) • It is the single neural network technology that allows the model to achieve high levels of detection accuracy of around 0.823 mAP with a custom dataset as compared to 0.895 with the COCO dataset. Due to its lightning-speed of 45 FPS object detection technology, it has become popular. Recommendations for Practitioners: Practitioners can help the model’s efficiency by increasing the sample size and classes used in training the model. Recommendation for Researchers: To detect objects in an image or live cam, there are various algorithms, e.g., R-CNN, Retina Net, Single Shot Detector (SSD), YOLO. Researchers can choose to use the YOLO version owing to its superior performance. Moreover, one of the YOLO versions, YOLOv5, outperforms its other versions such as YOLOv3 and YOLOv4 in terms of speed and accuracy. Impact on Society: We discuss new low-cost technologies that enable visually impaired people to navigate effectively in indoor environments. Future Research: The future of deep learning could incorporate recurrent neural networks on a larger set of data with special AI-based processors to avoid latency.

Publisher

Informing Science Institute

Subject

Education,Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3