Abstract
In this study, we aim to construct explicit forms of convolution formulae for Gegenbauer kernel filtration on the surface of the unit hypersphere. Using the properties of Gegenbauer polynomials, we reformulated Gegenbauer filtration as the limit of a sequence of finite linear combinations of hyperspherical Legendre harmonics and gave proof for the completeness of the associated series. We also proved the existence of a fundamental solution of the spherical Laplace-Beltrami operator on the hypersphere using the filtration kernel. An application of the filtration on a one-dimensional Cauchy wave problem was also demonstrated.
Publisher
International Journal of Advanced and Applied Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献