Abstract
This paper was presented a comparative study on the methods of adjusting the speed of a three-phase asynchronous motor with a rotor in a short circuit. For the same structure of the experimental stand used, two programs were created, implemented, and validated in LabVIEW. For the first method, the program in LabVIEW was made with the PI (proportional-integrative) controller and for the second method, the program in LabVIEW was made with the Fuzzy Logic controller. Following the analysis of the resulting graphs, it was found that the speed control system made with the fuzzy logic controller ensures an increase in its performance compared to the speed control system made with the conventional PI type controller. The indicial responses of the adjustment system of the three-phase asynchronous motor speed with PI controller or Fuzzy Logic controller have been determined in real-time by means of the experimental stand. The override of the speed adjustment system is decreased from the value of 26.9% corresponding to the PI controller to the value of 2.3% corresponding to the Fuzzy Logic controller and the duration of the transient time is decreased from the value of 2.2 s related to the PI controller to the value of 0.5 s, related to the Fuzzy Logic controller. By using the Fuzzy Logic controller, the amount of electrical energy required to supply the electric drive system made with a three-phase asynchronous motor will be reduced. This three-phase asynchronous motor speed adjustment algorithm can be implemented for other electric drive systems from different industrial applications.
Publisher
International Journal of Advanced and Applied Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献