Fuzzy-based reliable and secure cooperative spectrum sensing for the smart grid

Author:

Nassef Laila,Alhebshi Reemah,

Abstract

Cognitive radio is a promising technology to solve the spectrum scarcity problem caused by inefficient utilization of radio spectrum bands. It allows secondary users to opportunistically access the underutilized spectrum bands assigned to licensed primary users. The local individual spectrum detection is inefficient, and cooperative spectrum sensing is employed to enhance spectrum detection accuracy. However, cooperative spectrum sensing opens up opportunities for new types of security attacks related to the cognitive cycle. One of these attacks is the spectrum sensing data falsification attack, where malicious secondary users send falsified sensing reports about spectrum availability to mislead the fusion center. This internal attack cannot be prevented using traditional cryptography mechanisms. To the best of our knowledge, none of the previous work has considered both unreliable communication environments and the spectrum sensing data falsification attack for cognitive radio based smart grid applications. This paper proposes a fuzzy inference system based on four conflicting descriptors. An attack model is formulated to determine the probability of detection for both honest and malicious secondary users. It considers four independent malicious secondary users’ attacking strategies of always yes, always no, random, and opposite attacks. The performance of the proposed fuzzy fusion system is simulated and compared with the conventional fusion rules of AND, OR, Majority, and the reliable fuzzy fusion that does not consider the secondary user’s sensing reputation. The results indicate that incorporating sensing reputation in the fusion center has enhanced the accuracy of spectrum detection and have prevented malicious secondary users from participating in the spectrum detection fusion

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3