Author:
Nassef Laila,Alhebshi Reemah,
Abstract
Cognitive radio is a promising technology to solve the spectrum scarcity problem caused by inefficient utilization of radio spectrum bands. It allows secondary users to opportunistically access the underutilized spectrum bands assigned to licensed primary users. The local individual spectrum detection is inefficient, and cooperative spectrum sensing is employed to enhance spectrum detection accuracy. However, cooperative spectrum sensing opens up opportunities for new types of security attacks related to the cognitive cycle. One of these attacks is the spectrum sensing data falsification attack, where malicious secondary users send falsified sensing reports about spectrum availability to mislead the fusion center. This internal attack cannot be prevented using traditional cryptography mechanisms. To the best of our knowledge, none of the previous work has considered both unreliable communication environments and the spectrum sensing data falsification attack for cognitive radio based smart grid applications. This paper proposes a fuzzy inference system based on four conflicting descriptors. An attack model is formulated to determine the probability of detection for both honest and malicious secondary users. It considers four independent malicious secondary users’ attacking strategies of always yes, always no, random, and opposite attacks. The performance of the proposed fuzzy fusion system is simulated and compared with the conventional fusion rules of AND, OR, Majority, and the reliable fuzzy fusion that does not consider the secondary user’s sensing reputation. The results indicate that incorporating sensing reputation in the fusion center has enhanced the accuracy of spectrum detection and have prevented malicious secondary users from participating in the spectrum detection fusion
Publisher
International Journal of Advanced and Applied Sciences