Evaluation of locally-available agricultural and industrial waste materials as effective carriers for bacterial inocula in freshwater bioremediation

Author:

Randima Gunasekara Wellappili Arachchige Pipuni,Yapa Yapa Mudiyanselage Ajith Lalith Weerasingha,Masakorala Kanaji,Kumari Widana Gamage Shirani ManelORCID

Abstract

The pollution of freshwater is a pressing global environmental concern, necessitating effective management strategies for polluted aquatic environments. Bioremediation has emerged as a highly promising environmentally friendly approach. However, the selection of suitable candidates capable of effectively degrading or removing pollutants remains a challenging task. The introduction of live candidates, particularly bacteria, into natural environments also poses its own set of difficulties. To address these challenges, immobilizing bacteria within carrier materials has emerged as a leading option. In this study, we meticulously assessed the suitability of four locally-available and low-cost agricultural and industrial waste materials as carriers to transport bacteria into water bodies. The selection criteria encompassed bacteria immobilization capacity, viability, and the resulting water quality after treatment. In order to facilitate comparison, the widely-used sodium alginate was included as a benchmark, and Escherichia coli was employed as the model bacterial inoculum. Our findings revealed that alkaline pre-treatment of corn husk, rice husk, rice straw, and sugarcane bagasse significantly enhanced the bacteria immobilization capacity of these materials. Notably, the viability of bacteria in carrier materials, including sodium alginate, exhibited remarkable resilience, with a count of 107 CFU/g material even after 49 days of storage at room temperature. Moreover, upon determining the quality parameters of the receiving water, the introduction of rice husk and sodium alginate materials demonstrated no significant adverse impact. The quality parameters were well within the acceptable range defined by the World Health Organization standards for drinking water and the Sri Lankan ambient water quality standards for various purposes. Based on the overall performance evaluation, we advocate for the application of rice husk and sodium alginate as superior carriers for delivering bacterial inocula to aquatic environments, particularly in polluted water bodies targeted for bioremediation efforts. Nonetheless, we recommend the collection of carrier materials only after the establishment of bio inoculum in the receiving water, as a precautionary measure to minimize any potential impact on the chemical oxygen demand of the water.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

Reference1 articles.

1. Braide, W., Sokari, T. G., Nwaoguikpe, R. N., & Okorondu, S. I. (2008). Microbes from soils associated with metamorphosing moth larvae. Current Trends in Microbiology, 4, 11-14.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3