Utilization of ICT and AI techniques in harnessing residential energy consumption for an energy-aware smart city: A review

Author:

et al. Mahmood,

Abstract

Fusion of Information and Communication Technologies (ICT) in traditional grid infrastructure makes it possible to share certain messages and information within the system that leads to optimized use of energy. Furthermore, using Computational Intelligence (CI) in the said domain opens new horizons to preserve electricity as well as the price of consumed electricity effectively. Hence, Energy Management Systems (EMSs) play a vital role in energy economics, consumption efficiency, resourcefulness, grid stability, reliability, and scalability of power systems. The residential sector has its high impact on global energy consumption. Curtailing and shifting load of the residential sector can result in solving major global problems and challenges. Moreover, the residential sector is more flexible in reshaping power consumption patterns. Using Demand Side Management (DSM), end users can manipulate their power consumption patterns such that electricity bills, as well as Peak to Average Ratio (PAR), are reduced. Therefore, it can be stated that Home Energy Management Systems (HEMSs) is an important part of ground-breaking smart grid technology. This article gives an extensive review of DSM, HEMS methodologies, techniques, and formulation of optimization problems. Concluding the existing work in energy management solutions, challenges and issues, and future research directions are also presented.

Publisher

International Journal of Advanced and Applied Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A smart energy monitoring system using ESP32 microcontroller;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

2. Leveraging Artificial Intelligence to Bolster the Energy Sector in Smart Cities: A Literature Review;Energies;2024-01-10

3. Enhancing Road Safety with Cloud-Integrated IoT Road Signal Detection System;2023 IEEE 16th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2023-12-18

4. Elasticity modelling of price-based demand response programs considering customer’s different behavioural patterns;Sustainable Energy, Grids and Networks;2023-12

5. Optimal scheduling of prosumer's battery storage and flexible loads for distribution network support;IET Generation, Transmission & Distribution;2023-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3