Evolution of existing software to mobile computing platforms: Framework support and case study

Author:

Alkhalil Adel,

Abstract

Mobile computing as ubiquitous and pervasive technology supports portable and context-aware computation. To date, there exist a significant number of traditional computing systems–running on the web and/or workstation-based platforms–that lack features of mobile computing, including but not limited to ubiquity, context-sensing, and high interactivity. Software that executes on these traditional computing systems is referred to as legacy software that can be upgraded to exploit the features of mobile technologies. However, legacy software may contain critical data, logic, and processes that cannot be easily replaced. One of the solutions is to evolve legacy software systems by (a) upgrading their functionality while (b) preserving their data and logic. Recently research and development efforts are focused on modernizing the legacy systems as per the needs of service and cloud-based platforms. However, there does not exist any research that supports a systematic modernization of legacy software as per the requirements of the mobile platforms. We propose a framework named Legacy-to-Mobile as a solution that supports an incremental and process-driven evolution of the legacy software to mobile computing software. The proposed Legacy-to-Mobile framework unifies the concepts of software reverse engineering (recovering software artifacts) and software change (upgrading software artifacts) to support the legacy evolution. The framework follows an incremental approach with four processes that include (i) evolution planning, (ii) architecture modeling, (iii) architecture change, and (iv) software validation of mobile computing software. The framework provides the foundation (as part of futuristic research) to develop a tool prototype that supports automation and user decision support for incremental and process-driven evolution of legacy software to mobile computing platforms.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3