Abstract
In this work, we have developed a General Entropy loss function (GE) to estimate parameters of Weibull distribution (WD) based on complete data when both shape and scale parameters are unknown. The development is done by merging weight into GE to produce a new loss function called the weighted General Entropy loss function (WGE). Then, we utilized WGE to derive the parameters of the WD. After, we compared the performance of the developed estimation in this work with the Bayesian estimator using the GE loss function. Bayesian estimator using square error (SE) loss function, Ordinary Least Squares Method (OLS), Weighted Least Squared Method (WLS), and maximum likelihood estimation (MLE). Based on the Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that the performance of the Bayes estimator under developed method (WGE) loss function is the best for estimating shape parameters in all cases and has good performance for estimating scale parameter.
Publisher
International Journal of Advanced and Applied Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献