An empirical study of extracting embedded text from digital images

Author:

Shafie EmadORCID

Abstract

The utilization of images as a means of transferring information is a widespread technique employed to circumvent simple detection functions that primarily focus on analyzing textual content rather than conducting thorough file examinations. This study investigates the efficacy of deep learning models in detecting embedded information within digital images. The data used for analysis was acquired from a secondary source and underwent comprehensive preprocessing. Feature extraction, sequence labeling, and predictive model training were performed using CRNN, CNN, and RNN models. Two specific models were trained and tested in this research: 1) CNN, RNN-LSTM with the Adam optimizer, and 2) CNN, RNN-GRU with the RAdam optimizer for text detection. The findings reveal that Model #1 achieved the highest F1-score during testing, with a score of 98.37% for text detection and 96.73% for word detection. The second model obtained an F1-score of 94.84% and 93.05% for text and word detection, respectively. Model #1 exhibited a word detection accuracy of 98.38% and a text detection accuracy of 96.47%. These findings indicate that the first model outperformed the second model, suggesting that employing RNN-LSTM and the Adam optimizer made a positive impact. Therefore, utilizing deep learning tools and emerging technologies is crucial for extracting textual information and analyzing visual data. In summary, this study concludes that deep learning models can be relied upon to effectively detect textual information embedded within digital images.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

Reference54 articles.

1. Adsmurai (2020). Cómo utilizan Instagram las mujeres en política. https://bit. ly/3axp4wj

2. Albaine, L. (2017). Marcos normativos contra el acoso y violencia política debido a género en América Latina. En F. Freidenberg y G. Valle Pérez (Eds.), Cuando hacer política te cuesta la vida. Estrategias contra la violencia política hacia las mujeres en América Latina (pp. 117-143). Universidad Nacional Autónoma de México.

3. Albenga, V., y Biscarrat, L. (2021). Aproximaciones feministas de la misoginia en plataformas: una perspectiva francesa. Investigaciones Feministas, 12(1), 57-66. https://doi.org/10.5209/infe.69088

4. Albright, M. (2016, 8 de marzo). A hidden reality: Violence against women in politics. CNN. https://cnn.it/3xec2uZ

5. Álvarez, E. (2017, 5-6 octubre). A un costado del poder: fronteras simbólicas en la prensa para el acceso de una primera dama a un cargo presidencial [Ponencia]. VII Jornada Internacional de Fronteras/Borderlands: Cultura e Historia, Monterrey, N. L., México.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3