A framework for predicting employee health risks using ensemble model

Author:

et al. Chan,

Abstract

Through the phenomenon of data, big data and data analytics have provided an opportunity to collect, store, process, analyze and visualize an immense amount of information. Healthcare is recognized as one of the most information-intensive sectors. An urge to explore analytics has been sparked by the rapid growth of data within the healthcare sector. Most employers in Malaysia provide medical benefits that are included in the medical insurance plan for their employees. Data collected such as the history of medical claims are stored with the HR (Human Resource) which contributes to the potential of analyzing and recognizing trends within medical claims to better understand the use and overall health of the employee population. Patients with higher risk will generally convert into patients with high costs. Hence, early intervention of these patients will allow employers to potentially minimize costs and plan preventative steps. In predictive analysis, Decision Trees and Regression are typical techniques applied. The proposed framework combines an ensemble technique known as Stacking. As opposed to a single predictive model, an ensemble predictive model would yield better performance and accuracy. The objective of this paper is therefore to review current practices and past research within the healthcare sector while suggesting a practical framework for classification ensemble modeling. Preliminary findings indicated that an ensemble model can produce higher predictive accuracy and performance than a single model.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3