Detecting block ciphers generic attacks: An instance-based machine learning method

Author:

Alsariera Yazan Ahmad,

Abstract

Cryptography facilitates selective communication through encryption of messages and or data. Block-cipher processing is one of the prominent methods for modern cryptographic symmetric encryption schemes. The rise in attacks on block-ciphers led to the development of more difficult encryption schemes. However, attackers decrypt block-ciphers through generic attacks given sufficient time and computing. Recent research had applied machine learning classification algorithms to develop intrusion detection systems to detect multiple types of attacks. These intrusion detection systems are limited by misclassifying generic attacks and suffer reduced effectiveness when evaluated for detecting generic attacks only. Hence, this study introduced and proposed k-nearest neighbors, an instance-based machine learning classification algorithm, for the detection of generic attacks on block-ciphers. The value of k was varied (i.e., 1, 3, 5, 7, and 9) and multiple nearest neighbors classification models were developed and evaluated using two distance functions (i.e., Manhattan and Euclidean) for classifying between generic attacks and normal network packets. All nearest neighbors models using the Manhattan distance function performed better than their Euclidean counterparts. The 1-nearest neighbor (Manhattan distance function) model had the highest overall accuracy of 99.6%, a generic attack detection rate of 99.5% which tallies with the 5, 7, and 9 nearest neighbors models, and a false alarm rate of 0.0003 which is the same for all Manhattan nearest neighbors classification models. These instance-based methods performed better than some existing methods that even implemented an ensemble of deep-learning algorithms. Therefore, an instance-based method is recommended for detecting block-ciphers generic attacks.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3