What do post-editors correct? A fine-grained analysis of SMT and NMT errors

Author:

Alvarez-Vidal SergiORCID,Oliver AntoniORCID,Badia ToniORCID

Abstract

The recent improvements in neural MT (NMT) have driven a shift from statistical MT (SMT) to NMT. However, to assess the usefulness of MT models for post-editing (PE) and have a detailed insight of the output they produce, we need to analyse the most frequent errors and how they affect the task. We present a pilot study of a fine-grained analysis of MT errors based on post-editors corrections for an English to Spanish medical text translated with SMT and NMT. We use the MQM taxonomy to compare the two MT models and have a categorized classification of the errors produced. Even though results show a great variation among post-editors’ corrections, for this language combination fewer errors are corrected by post-editors in the NMT output. NMT also produces fewer accuracy errors and errors that are less critical.

Publisher

Universitat Autonoma de Barcelona

Subject

Literature and Literary Theory,Linguistics and Language,Language and Linguistics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technology-Powered Multilingual Professional and Technical Writing: An Integrative Literature Review of Landmark and the Latest Writing Assistance Tools;IEEE Transactions on Professional Communication;2024-09

2. Reading takes it all? – the role of language competence and subject knowledge in legal translation;The Interpreter and Translator Trainer;2024-04-02

3. Adopting machine translation in the healthcare sector: A methodological multi-criteria review;Computer Speech & Language;2024-03

4. Let it go. ¿Déjalo ir o suéltalo?;HUMAN REVIEW. International Humanities Review / Revista Internacional de Humanidades;2022-12-20

5. La traducción automática y la posedición en el ámbito médico;Tradumàtica: tecnologies de la traducció;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3