Spatial disparities in incidence of COVID-19 in relation to economic and socio-demographic factors in the Autonomous Community of Madrid, Spain

Author:

Escolano-Utrilla SeverinoORCID,Roca-Medina AndrésORCID,Barrado-Timón Diego

Abstract

This article models the relationship between the incidence of COVID-19 and several socioeconomic factors during the second period of epidemic (22 June 2020 to 06 December 2020) in the Autonomous Community of Madrid, Spain. Data collected from Basic Health Zones (BHZs) is adjusted using the random forest method, which proves very appropriate for capturing non-linear relationships and obtaining accurate and robust predictions. The results show that the impact of the examined socio-economic variables on rates of incidence of COVID-19 was not uniform, and that levels of mean income by neighborhood exerted stronger influence than population density, proportion of the Spanish population, mean age of the population or average household size. A complex spatial pattern emerges from the combination of impacts, reflecting the relative weights of the different factors in terms of intensity of the pandemic. This information may be considered strategic for the effective future management of health resources.

Publisher

Universitat Autonoma de Barcelona

Reference63 articles.

1. ALMENDRA, Ricardo; SANTANA, Paula and COSTA, Claudia (2021). “Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal”. Boletín de la Asociación de Geógrafos Españoles, 91. https://doi.org/10.21138/bage.3160

2. AMDAOUD, Mounir; ARCURI, Giuseppe; LEVRATTO, Nadine; SUCCURRO, Marianna and CONSTANZO, Damiana (2020). “Geography of COVID-19 outbreak and first policy answers in European regions and cities”. Halshs-03046489. Retrieved from https://halshs.archives-ouvertes.fr/halshs-03046489

3. AMENGUAL-MORENO, Miquel; CALAFAT-CAULES, Marina; CAROT, Aina; ROSA CORREIA, Ana Rita; RÍO-BERGÉ, Claudia; ROVIRA PLUJÀ, Jana; VALENZUELA PASCUAL, Clàudia and VENTURA-GABARRÓ, Cèlia (2020). “Social determinants of the incidence of Covid-19 in Barcelona: a preliminary ecological study using public data”. Revista española de salud pública, 94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/32935664

4. ANSELIN, Luc (2020). Documentation/GeoDa on Github/GeoDa Workbook. Retrieved from https://geodacenter.github.io/documentation.html

5. ANSELIN, Luc (2021). GeoDa (Tm) (1.20.). Retrieved from https://geodacenter.github.io/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3