Continuous subcutaneous insulin infusion versus multiple daily injections in children and young people at diagnosis of type 1 diabetes: the SCIPI RCT

Author:

Blair Joanne1ORCID,McKay Andrew2ORCID,Ridyard Colin3ORCID,Thornborough Keith4ORCID,Bedson Emma2ORCID,Peak Matthew5ORCID,Didi Mohammed1ORCID,Annan Francesca6ORCID,Gregory John W7ORCID,Hughes Dyfrig3ORCID,Gamble Carrol2ORCID

Affiliation:

1. Department of Endocrinology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK

2. Clinical Trials Research Centre, University of Liverpool, Liverpool, UK

3. Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, UK

4. Department of Diabetes, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK

5. Department of Research, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK

6. Paediatric and Adolescent Division, University College Hospital, London, UK

7. Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, UK

Abstract

Background The risk of developing long-term complications of type 1 diabetes (T1D) is related to glycaemic control and is reduced by the use of intensive insulin treatment regimens: multiple daily injections (MDI) (≥ 4) and continuous subcutaneous insulin infusion (CSII). Despite a lack of evidence that the more expensive treatment with CSII is superior to MDI, both treatments are used widely within the NHS. Objectives (1) To compare glycaemic control during treatment with CSII and MDI and (2) to determine safety and cost-effectiveness of the treatment, and quality of life (QoL) of the patients. Design A pragmatic, open-label randomised controlled trial with an internal pilot and 12-month follow-up with 1 : 1 web-based block randomisation stratified by age and centre. Setting Fifteen diabetes clinics in hospitals in England and Wales. Participants Patients aged 7 months to 15 years. Interventions Continuous subsutaneous insulin infusion or MDI initiated within 14 days of diagnosis of T1D. Data sources Data were collected at baseline and at 3, 6, 9 and 12 months using paper forms and were entered centrally. Data from glucometers and CSII were downloaded. The Health Utilities Index Mark 2 was completed at each visit and the Pediatric Quality of Life Inventory (PedsQL, diabetes module) was completed at 6 and 12 months. Costs were estimated from hospital patient administration system data. Outcomes The primary outcome was glycosylated haemoglobin (HbA1c) concentration at 12 months. The secondary outcomes were (1) HbA1c concentrations of < 48 mmol/mol, (2) severe hypoglycaemia, (3) diabetic ketoacidosis (DKA), (4) T1D- or treatment-related adverse events (AEs), (5) change in body mass index and height standard deviation score, (6) insulin requirements, (7) QoL and (8) partial remission rate. The economic outcome was the incremental cost per quality-adjusted life-year (QALY) gained. Results A total of 293 participants, with a median age of 9.8 years (minimum 0.7 years, maximum 16 years), were randomised (CSII, n = 149; MDI, n = 144) between May 2011 and January 2015. Primary outcome data were available for 97% of participants (CSII, n = 143; MDI, n = 142). At 12 months, age-adjusted least mean squares HbA1c concentrations were comparable between groups: CSII, 60.9 mmol/mol [95% confidence interval (CI) 58.5 to 63.3 mmol/mol]; MDI, 58.5 mmol/mol (95% CI 56.1 to 60.9 mmol/mol); and the difference of CSII – MDI, 2.4 mmol/mol (95% CI –0.4 to 5.3 mmol/mol). For HbA1c concentrations of < 48 mmol/mol (CSII, 22/143 participants; MDI, 29/142 participants), the relative risk was 0.75 (95% CI 0.46 to 1.25), and for partial remission rates (CSII, 21/86 participants; MDI, 21/64), the relative risk was 0.74 (95% CI 0.45 to 1.24). The incidences of severe hypoglycaemia (CSII, 6/144; MDI, 2/149 participants) and DKA (CSII, 2/144 participants; MDI, 0/149 participants) were low. In total, 68 AEs (14 serious) were reported during CSII treatment and 25 AEs (eight serious) were reported during MDI treatment. Growth outcomes did not differ. The reported insulin use was higher with CSII (mean difference 0.1 unit/kg/day, 95% CI 0.0 to 0.2 unit/kg/day; p = 0.01). QoL was slightly higher for those randomised to CSII. From a NHS perspective, CSII was more expensive than MDI mean total cost (£1863, 95% CI £1620 to £2137) with no additional QALY gains (–0.006 QALYs, 95% CI –0.031 to 0.018 QALYs). Limitations Generalisability beyond 12 months is uncertain. Conclusions No clinical benefit of CSII over MDI was identified. CSII is not a cost-effective treatment in patients representative of the study population. Future work Longer-term follow-up is required to determine if clinical outcomes diverge after 1 year. A qualitative exploration of patient and professional experiences of MDI and CSII should be considered. Trial registration Current Controlled Trials ISRCTN29255275 and EudraCT 2010-023792-25. Funding This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 42. See the NIHR Journals Library website for further project information. The cost of insulin pumps and consumables supplied by F. Hoffman-La Roche AG (Basel, Switzerland) for the purpose of the study were subject to a 25% discount on standard NHS costs.

Funder

Health Technology Assessment programme

F. Hoffman-La Roche AG (Basel, Switzerland)

Publisher

National Institute for Health Research

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3