Development of a cost-effectiveness model for optimisation of the screening interval in diabetic retinopathy screening

Author:

Scanlon Peter H1,Aldington Stephen J1,Leal Jose2,Luengo-Fernandez Ramon2,Oke Jason3,Sivaprasad Sobha4,Gazis Anastasios5,Stratton Irene M1

Affiliation:

1. Gloucestershire Retinal Research Group, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham General Hospital, Cheltenham, UK

2. Health Economics Research Centre (HERC), Nuffield Department of Population Health, University of Oxford, Oxford, UK

3. Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK

4. King’s College Hospital NHS Foundation Trust, King’s College Hospital, London, UK

5. Department of Diabetes and Endocrinology, Nottingham University Hospitals NHS Trust, Nottingham, UK

Abstract

BackgroundThe English NHS Diabetic Eye Screening Programme was established in 2003. Eligible people are invited annually for digital retinal photography screening. Those found to have potentially sight-threatening diabetic retinopathy (STDR) are referred to surveillance clinics or to Hospital Eye Services.ObjectivesTo determine whether personalised screening intervals are cost-effective.DesignRisk factors were identified in Gloucestershire, UK using survival modelling. A probabilistic decision hidden (unobserved) Markov model with a misgrading matrix was developed. This informed estimation of lifetime costs and quality-adjusted life-years (QALYs) in patients without STDR. Two personalised risk stratification models were employed: two screening episodes (SEs) (low, medium or high risk) or one SE with clinical information (low, medium–low, medium–high or high risk). The risk factor models were validated in other populations.SettingGloucestershire, Nottinghamshire, South London and East Anglia (all UK).ParticipantsPeople with diabetes in Gloucestershire with risk stratification model validation using data from Nottinghamshire, South London and East Anglia.Main outcome measuresPersonalised risk-based algorithm for screening interval; cost-effectiveness of different screening intervals.ResultsData were obtained in Gloucestershire from 12,790 people with diabetes with known risk factors to derive the risk estimation models, from 15,877 people to inform the uptake of screening and from 17,043 people to inform the health-care resource-usage costs. Two stratification models were developed: one using only results from previous screening events and one using previous screening and some commonly available GP data. Both models were capable of differentiating groups at low and high risk of development of STDR. The rate of progression to STDR was 5 per 1000 person-years (PYs) in the lowest decile of risk and 75 per 1000 PYs in the highest decile. In the absence of personalised risk stratification, the most cost-effective screening interval was to screen all patients every 3 years, with a 46% probability of this being cost-effective at a £30,000 per QALY threshold. Using either risk stratification models, screening patients at low risk every 5 years was the most cost-effective option, with a probability of 99-100% at a £30,000 per QALY threshold. For the medium-risk groups screening every 3 years had a probability of 43 –48% while screening high-risk groups every 2 years was cost-effective with a probability of 55–59%.ConclusionsThe study found that annual screening of all patients for STDR was not cost-effective. Screening this entire cohort every 3 years was most likely to be cost-effective. When personalised intervals are applied, screening those in our low-risk groups every 5 years was found to be cost-effective. Screening high-risk groups every 2 years further improved the cost-effectiveness of the programme. There was considerable uncertainty in the estimated incremental costs and in the incremental QALYs, particularly with regard to implications of an increasing proportion of maculopathy cases receiving intravitreal injection rather than laser treatment. Future work should focus on improving the understanding of risk, validating in further populations and investigating quality issues in imaging and assessment including the potential for automated image grading.Study registrationIntegrated Research Application System project number 118959.Funding detailsThe National Institute for Health Research Health Technology Assessment programme.

Funder

Health Technology Assessment programme

Publisher

National Institute for Health Research

Subject

Health Policy

Reference107 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3