The Problem of Data Mining in Modelling Traffic Flows in a Megapolis

Author:

Kuftinova N. G.1

Affiliation:

1. Moscow Automobile and Road Construction State Technical University (MADI)

Abstract

The article discusses the problems of using data mining in a transport model as a digital platform for analysing data on traffic flows in a megapolis, and prerequisites for creation in future of single data banks and an integrated environment for interaction of models of different levels as clusters of the digital economy, which will consider all modes of transport to assess transport demand and develop projects for organizing traffic in a megapolis.The objective of the work is to study the processes of obtaining quantitative characteristics of objects of transport modelling when creating a single electronic environment by calculating the derived parameters of the transport network of a megapolis. Quantitative spatial characteristics of an object are associated with calculating the distance from a city centre and a main street and are determined using geographic information systems entailing consequent problem of data unification and efficient data storage.As part of achieving that objective, it is shown that it is necessary to create a preprocessing and validation procedure for all primary transport data, since data sources have different formats and spatial interpolation of tracking data. For this, it is recommended to use various methods of data analysis based on GIS technologies, digital terrain modelling, topology of the road network and other objects of the transport network of a megapolis. Besides, the use of intelligent data should be preceded by formatting and grouping the source data in real time. The most common errors arise at the stage of the iterative process for obtaining quantitative characteristics of objects of transport modelling and building the optimal route in terms of travel time along a certain transport network.The existing trends of urban growth require global digitalization of all transport infrastructure objects, considering changes in the functions of the transport environment and in intensity of traffic flows. Theis entails further development and implementation of new information technologies for data processing using neural networks and other digital technologies.

Publisher

FSBEO HPE Moscow State University of Railway Engineering (MIIT)

Reference17 articles.

1. GOST R [State Standard] 56670-2015 Intelligent transport systems.Subsystem for monitoring the parameters of traffic flows based on the analysis of telematic data of urban passenger transport [GOST R56670-2015 Intellektualnie transportnie sistemy. Podsistema monitoring parametrov transportnykh potokov na osnove analiza telematicheskikh dannykh gorodskogo passazhirskogo transporta]. [Electronic resource]: http://docs.cntd.ru/document/1200125977. Last accessed 20.07.2020.

2. Vaksman, S. A. Information technologies in management of urban public passenger transport (tasks, experience, problems) [Informatsionnie tekhnologii v upravlenii gorodskim obshchestvennym passazhirskim transportom (zadachi, opyt, problemy)]. Ed. by S. A. Vaksman. Yekaterinburg, Publishing house of AMB, 2012, 250 p. [Electronic resource]: http://www.waksman.ru/Russian/Criticism/Vaksman/Begin.pdf. Last accessed 20.07.2020.

3. Kuftinova, N. G. Modelling the dynamics of traffic flows using cluster analysis [Modelirovanie dinamiki avtotransportnykh potokov s pomoshchyu klasternogo analiza]. Collection of scientific works of IV international scientific and practical conference «Transport planning and modelling», St. Petersburg, 2019, pp. 106–108. [Electronic resource]: https://interactiveplus.ru/e-articles/545/Action545-470172.pdf. Last accessed 20.07.2020.

4. Kuftinova, N. G. Mathematical modelling of traffic flows on the basis of macro- and microapproaches of the urban transport system [Matematicheskoe modelirovanie transportnykh potokov na osnove makro- i mikro-podkhodov transportnoi sistemy]. Collection of scientific works of III international scientific and practical conference «Transport planning and modelling. The digital future of transport management». Ed. by D.Sc. (Eng), Professor S. V. Zhankaziev. Moscow, MADI publ., 2018, pp. 67–76. [Electronic resource]: https://www.elibrary.ru/item.asp?id=37057419. Last accessed 20.07.2020.

5. Kuftinova, N. G. Intelligent transport infrastructure of a megalopolis based on geoanalysis and geo-modelling of motor transport systems [Intellektualnaya transportnaya infrastruktura megapolisa na osnove geoanaliza i geomodelirovaniya avtotransportnykh sistem].Logistic audit of transport and supply chains: Materials of an international scientific and practical conference, Tyumen, TIU publ., 2018, pp. 76–82. [Electronic resource]: https://docplayer.ru/45169767-Udk-informacionno-logicheskaya-modeltransportnoy-seti-megapolisa-kuftinova-n-g.html. Last accessed 20.07.2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3