Flexible Pavement Crack’s Severity Identification and Classification using Deep Convolution Neural Network

Author:

Ibrahim A.,Zukri N. A. Z. M.,Ismail B. N.,Osman M. K.,Yusof N. A. M.,Idris M.,Rabian A. H.,Bahri I.

Abstract

Effective road maintenance program is vital to ensure traffic safety, serviceability, and prolong the life span of the road. Maintenance will be carried out on pavements when signs of degradation begin to appear and delays may also lead to increased maintenance costs in the future, when more severe changes may be required. In Malaysia, manual visual observation is practiced in the inspection of distressed pavements. Nonetheless, this method of inspection is ineffective as it is more laborious, time consuming and poses safety hazard. This study focuses in utilizing an Artificial Intelligence (AI) method to automatically classify pavement crack severity. Field data collection was conducted to allow meaningful verification of accuracy and reliability of the crack’s severity prediction based on AI. Several important phases are required in research methodology processes including data collection, image labelling, image resizing, image enhancement, deep convolution neural network (DCNN) training and performance evaluation. Throughout the analysis of image processing results, the image output was successfully classified using MATLAB software. The good agreement between field measurement data and DCNN prediction of crack’s severity proved the reliability of the system. In conclusion, the established method can classify the crack’s severity based on the JKR guideline of visual assessment.

Publisher

UiTM Press, Universiti Teknologi MARA

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of ML techniques and suitability to predict the compressive strength of high-performance concrete (HPC);Asian Journal of Civil Engineering;2024-08-13

2. Detection of pothole for repair works of asphalt flexible pavement optimization using YOLO;INTERNATIONAL CONFERENCE OF MATHEMATICS AND MATHEMATICS EDUCATION (I-CMME) 2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3