PREDICTION OF DIABETIC RETINOPATHY AMONG TYPE II DIABETIC PATIENTS USING DATA MINING TECHNIQUES

Author:

Khairudin Zuraida,Abdul Razak Nurfatin Adila,Abd Rahman Hezlin Aryani,Kamaruddin Norbaizura,Abd Aziz Nor Azimah

Abstract

Diabetic retinopathy is one of the leading causes of visual disability and blindness worldwide. It is estimated that 4.8% out of 37 million cases of blindness were due to diabetic retinopathy, globally. It affects patients suffering from prolonged diabetes, which probably results in permanent blindness. The earliest symptoms surfaced when the patients have vision problems. Therefore, regular eyes examination and early intervention normally controls this disease. Many studies for early intervention and prevention of diabetic retinopathy uses various predictive models. The booming of database and digital storage technology creates an abundance of health records. Thus, data mining techniques helps uncover meaningful patterns while attending to sensitivity health record issues. Hence, this study took the data mining approach in predicting the presence of diabetic retinopathy narrowing to only Type II diabetic patients as well as to determine the risk factors that contribute to the presence of diabetic retinopathy. The data mining models selected for this study is the Logistic Regression, Decision Tree and Artificial Neural Network. The dataset of 361 Type II diabetic patients from Ophthalmology Clinic, UiTM Medical Specialist Centre were selected between January 2014 to December 2018, consists of 17 variables. The result shows that the Logistic Regression using Forward selection method model is the best model it had the highest sensitivity (Sen=50.0%), specificity (Spe=79.03%) and accuracy rate (Acc=66.36%) on the validation dataset compared to other Logistic Regression selection options. Meanwhile among the Decision Tree models, DT using Gini is the best model. Logistic Regression (Forward) and Decision Tree (Gini) were then compared with Artificial Neural Network model (Sen=56.25%, Spe=70.97%, Acc=64.55%). The results demonstrated that Logistic Regression using Forward selection method was the best model to predict the presence of diabetic retinopathy among the Type II diabetic patients compared to other models. The significant risk factors associated with the presence of the diabetic retinopathy obtained are duration of diabetes, HbA1C level, diabetic foot ulcer, nephropathy, and neuropathy.

Publisher

UiTM Press, Universiti Teknologi MARA

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3