A Study on Correlation of Subjects on Electrical Engineering Course Using Artificial Neural Network (ANN)

Author:

Zakaria Fathiah,Che Kar Siti Aishah,Abdullah Rina,Ismail Syila Izawana,Md Enzai Nur Idawati

Abstract

Abstract: This paper presents a study of correlation between subjects of Diploma in Electrical Engineering (Electronics/Power) at Universiti Teknologi MARA(UiTM) Cawangan Terengganu using Artificial Neural Network (ANN). The analysis was done to see the effect of mathematical subjects (Pre-calculus and Calculus 1) and core subject (Electric Circuit 1) on Electronics 1. Electronics 1 is found to be a core subject with the history of high failure rate percentage (more than 25%) in previous semesters. This research has been conducted on current final semester students (Semester 5). Seven (7) models of ANN are developed to observe the correlation between the subjects. In order to develop an ANN model, ANN design and parameters need to be chosen to find the best model. In this study, historical data from students’ database were used for training and testing purpose. Total number of datasets used are 58 sets. 70% of the datasets are used for training process and 30% of the datasets are used for testing process. The Regression Coefficient, (R) values from the developed models was observed and analyzed to see the effect of the subject on the performance of students. It can be proven that Electric Circuit 1 has significant correlation with the Electronics 1 subject respected to the highest R value obtained (0.8100). The result obtained proves that student’s understanding on Electric Circuit 1 subject (taken during semester 2) has direct impact on the performance of students on Electronics 1 subject (taken during semester 3). Hence, early preventive measures could be taken by the respective parties.    Keywords: Artificial neural network, Diploma in Electrical Engineering, Graduate on time, Correlation.

Publisher

UiTM Press, Universiti Teknologi MARA

Subject

Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3