IMPLEMENTATION OF MACHINE LEARNING FOR PREDICTING MAIZE CROP YIELDS USING MULTIPLE LINEAR REGRESSION AND BACKWARD ELIMINATION

Author:

Fashoto Stephen,Mbunge Elliot,Ogunleye Gabriel,Van den Burg Johan

Abstract

Predicting maize crop yields especially in maize production is paramount in order to alleviate poverty and contribute towards food security. Many regions experience food shortage especially in Africa because of uncertain climatic changes, poor irrigation facilities, reduction in soil fertility and traditional farming techniques. Therefore, predicting maize crop yields helps policymakers to make timely import and export decisions to strengthen national food security. However, none of the published work has been done to predict maize crop yields using machine learning in Eswatini, Africa. This paper aimed at applying machine learning (ML) to predict maize yields for a single season in Eswatini. A ML model was trained and tested using open-source data and local data. This is done by using three different data splits with the open-source predictor data consisting of 48 data points each with 7 attributes and open-source response data consisting of 48 data points each with a single attribute, adjusted R² values were 0.784 (at 70:30), 0.849 (at 80:20), and 0.878 (at 90:10) before being normalized, 1.00 across the board after normalization, and 0.846 (at 70:30), 0.886 (at 80:20), and 0.885 (at 90:10) after backward elimination. At the second attempt, it is done by using the combined predictor data of 68 data points with 7 attributes each and combined response data of 68 data points with a single attribute each, with the same data splits and methods adjusted R² values were 0.966 (at 70:30), 0.972 (at 80:20), and 0.978 (at 90:10) before being normalized, 1.00 across the board after normalization, and 0.967 (at 70:30), 0.973 (at 80:20), and 0.978 (at 90:10) after backward elimination.      

Publisher

UiTM Press, Universiti Teknologi MARA

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3