A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant species observation data in order to quantify the fraction of Earth’s extant land plant biodiversity that is common versus rare. Tests of different hypotheses for the origin of species commonness and rarity indicates that sampling biases and prominent models such as niche theory and neutral theory cannot account for the observed prevalence of rare species. Instead, the distribution of commonness is best approximated by heavy-tailed distributions like the Pareto or Poisson-lognormal distributions. As a result, a large fraction, ~36.5% of an estimated ~435k total plant species, are exceedingly rare. We also show that rare species tend to cluster in a small number of ‘hotspots’ mainly characterized by being in tropical and subtropical mountains and areas that have experienced greater climate stability. Our results indicate that (i) non-neutral processes, likely associated with reduced risk of extinction, have maintained a large fraction of Earth’s plant species but that (ii) climate change and human impact appear to now and will disproportionately impact rare species. Together, these results point to a large fraction of Earth’s plant species are faced with increased chances of extinction. Our results indicate that global species abundance distributions have important implications for conservation planning in this era of rapid global change.