Seasonally variable relationships between surface water temperature and inflow in the upper San Francisco Estuary

Author:

Bashevkin Samuel M.ORCID,Mahardja Brian

Abstract

Water temperature and inflow are key environmental drivers in aquatic systems that are linked through a causal web of factors including climate, weather, water management, and their downstream linkages. However, we do not yet fully understand the relationship between inflow and water temperature, especially in complex managed systems such as estuaries. The San Francisco Estuary is the center of a critical water supply infrastructure and home to a deteriorating ecosystem with several declining fish species at the warm edge of their thermal range. We used generalized additive modeling of long-term monitoring data to evaluate the relationship between inflow and water temperature along with its spatio-seasonal variability. Most commonly, we found a negative temperature-inflow relationship in which water temperatures increased as inflow decreased, up to 2 °C from high to low-inflow years. However, the opposite (positive) relationship was observed in the winter months, and in the western (downstream) regions from July-September, up to -1.2 °C from high to low-inflow years. These results were upheld by models that included the long-term temperature trend or used salinity as a proxy for location. Upstream factors likely played the biggest role in the summer when local precipitation is negligible, whereas local precipitation and the related weather conditions may drive much of the winter pattern. Although further mechanistic studies are needed to infer the direct effect of dam releases on water temperatures, these results provide a broader understanding of the impacts of flood and drought dynamics for those tasked with managing estuarine ecosystems.

Publisher

Center for Open Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3