In situ characterization of hydrogen absorption in nanoporous palladium produced by dealloying

Author:

Steyskal Eva-Maria,Wiednig Christopher,Enzinger Norbert,Würschum Roland

Abstract

Palladium is a frequently used model system for hydrogen storage. During the past few decades, particular interest was placed on the superior H-absorption properties of nanostructured Pd systems. In the present study nanoporous palladium (np-Pd) is produced by electrochemical dealloying, an electrochemical etching process that removes the less noble component from a master alloy. The volume and electrical resistance of np-Pd are investigated in situ upon electrochemical hydrogen loading and unloading. These properties clearly vary upon hydrogen ad- and absorption. During cyclic voltammetry in the hydrogen regime the electrical resistance changes reversibly by almost 10% upon absorbing approximately 5% H/Pd (atomic ratio). By suitable loading procedures, hydrogen concentrations up to almost 60% H/Pd were obtained, along with a sample thickness increase of about 5%. The observed reversible actuation clearly exceeds the values found in the literature, which is most likely due to the unique structure of np-Pd with an extraordinarily high surface-to-volume ratio.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3