Author:
Kaneko Masao,Ueno Hirohito,Nemoto Junichi
Abstract
The nature and photoelectrochemical reactivity of nanoporous semiconductor electrodes have attracted a great deal of attention. Nanostructured materials have promising capabilities applicable for the construction of various photonic and electronic devices. In this paper, a mesoporous TiO2 thin film photoanode was soaked in an aqueous methanol solution using an O2-reducing Pt-based cathode in contact with atmospheric air on the back side. It was shown from distinct photocurrents in the cyclic voltammogram (CV) that the nanosurface of the mesoporous n-TiO2 film forms a Schottky junction with water containing a strong electron donor such as methanol. Formation of a Schottky junction (liquid junction) was also proved by Mott–Schottky plots at the mesoporous TiO2 thin film photoanode, and the thickness of the space charge layer was estimated to be very thin, i.e., only 3.1 nm at −0.1 V vs Ag/AgCl. On the other hand, the presence of [Fe(CN)6]4− and the absence of methanol brought about ohmic contact behavior on the TiO2 film and exhibited reversible redox waves in the dark due to the [Fe(CN)6]4−/3− couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO2 photoanode soaked in an aqueous redox electrolyte solution containing methanol and [Fe(CN)6]4−. That is, the TiO2 nanosurface responds to [Fe(CN)6]4− to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and [Fe(CN)6]4− around the redox potential of the iron complex. It was suggested that the iron complex forms a second Schottky junction for which the flat band potential (Efb) lies near the redox potential of the iron complex.
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献