Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes

Author:

Koch Sascha,Kaiser Christopher D,Penner Paul,Barclay Michael,Frommeyer Lena,Emmrich Daniel,Stohmann Patrick,Abu-Husein Tarek,Terfort Andreas,Fairbrother D Howard,Ingólfsson Oddur,Gölzhäuser Armin

Abstract

The determination of the negative ion yield of 2′-chloro-1,1′-biphenyl (2-Cl-BP), 2′-bromo-1,1′-biphenyl (2-Br-BP) and 2′-iodo-1,1′-biphenyl (2-I-BP) upon dissociative electron attachment (DEA) at an electron energy of 0 eV revealed cross section values that were more than ten times higher for iodide loss from 2-I-BP than for the other halogenides from the respective biphenyls (BPs). Comparison with dissociative ionization mass spectra shows that the ratio of the efficiency of electron impact ionization induced fragmentation of 2-I-BP, 2-Br-BP, and 2-Cl-BP amounts to approximately 1:0.7:0.6. Inspired by these results, self-assembled monolayers (SAMs) of the respective biphenyl-4-thiols, 2-Cl-BPT, 2-Br-BPT, 2-I-BPT as well as BPT, were grown on a Au(111) substrate and exposed to 50 eV electrons. The effect of electron irradiation was investigated by X-ray photoelectron spectroscopy (XPS), to determine whether the high relative DEA cross section for iodide loss from 2-I-BPT as compared to 2-Br-BP and 2-Cl-BP is reflected in the cross-linking efficiency of SAMs made from these materials. Such sensitization could reduce the electron dose needed for the cross-linking process and may thus lead to a significantly faster conversion of the respective SAMs into carbon nanomembranes (CNMs) without the need for an increased current density. XPS data support the notation that DEA sensitization may be used to achieve more efficient electron-induced cross-linking of SAMs, revealing more than ten times faster cross-linking of 2-I-BPT SAMs compared to those made from the other halogenated biphenyls or from native BPT at the same current density. Furthermore, the transfer of a freestanding membrane onto a TEM grid and the subsequent investigation by helium ion microscopy (HIM) verified the existence of a mechanically stable CNM created from 2-I-BPT after exposure to an electron dose as low as 1.8 mC/cm2. In contrast, SAMs made from BPT, 2-Cl-BPT and 2-Br-BPT did not form stable CNMs after a significantly higher electron dose of 9 mC/cm2.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3