Liquid permeation and chemical stability of anodic alumina membranes

Author:

Petukhov Dmitrii I,Buldakov Dmitrii A,Tishkin Alexey A,Lukashin Alexey V,Eliseev Andrei A

Abstract

A study on the chemical stability of anodic alumina membranes and their performance in long-term water and organic solvent permeation experiments is reported. Anodic alumina possesses high stability for both protonic and aprotonic organic solvents. However, serious degradation of the membrane occurs in pure water, leading to a drastic decrease of permeance (over 20% of the initial value after the passing of 0.250 m3/m2 of pure water). The drying of the membrane induces further permeance drop-off. The rate of membrane degradation strongly depends on the pH of the penetrant solution and increases in basic media. According to 27Al NMR and thermogravimetry results, the degradation of the membranes is associated with the dissolution of water-soluble [Al13O4(OH)24(H2O)12]7+ polyhydroxocomplexes and their further redeposition in the form of [Al(OH)4], resulting in channels blocking. This process intensifies in basic pH due to the high positive charge of the anodic alumina surface. An approach for improving anodic aluminum oxide stability towards dissolution in water by carbon CVD coating of the membrane walls is suggested.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3