Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

Author:

Ordóñez John EORCID,Marín LorenaORCID,Rodríguez Luis AORCID,Algarabel Pedro AORCID,Pardo José AORCID,Guzmán RogerORCID,Morellón LuisORCID,Magén CésarORCID,Snoeck EtienneORCID,Gómez María EORCID,Ibarra Manuel RORCID

Abstract

We studied in detail the in-plane magnetic properties of heterostructures based on a ferroelectric BaTiO3 overlayer deposited on a ferromagnetic La2/3Sr1/3MnO3 film grown epitaxially on pseudocubic (001)-oriented SrTiO3, (LaAlO3)0.3(Sr2TaAlO6)0.7 and LaAlO3 substrates. In this configuration, the combination of both functional perovskites constitutes an artificial multiferroic system with potential applications in spintronic devices based on the magnetoelectric effect. La2/3Sr1/3MnO3 single layers and BaTiO3/La2/3Sr1/3MnO3 bilayers using the pulsed-laser deposition technique. We analyzed the films structurally through X-ray reciprocal space maps and high-angle annular dark field microscopy, and magnetically via thermal demagnetization curves and in-plane magnetization versus applied magnetic field loops at room temperature. Our results indicate that the BaTiO3 layer induces an additional strain in the La2/3Sr1/3MnO3 layers close to their common interface. The presence of BaTiO3 on the surface of tensile-strained La2/3Sr1/3MnO3 films transforms the in-plane biaxial magnetic anisotropy present in the single layer into an in-plane uniaxial magnetic anisotropy. Our experimental evidence suggests that this change in the magnetic anisotropy only occurs in tensile-strained La2/3Sr1/3MnO3 film and is favored by an additional strain on the La2/3Sr1/3MnO3 layer promoted by the BaTiO3 film. These findings reveal an additional mechanism that alters the magnetic behavior of the ferromagnetic layer, and consequently, deserves further in-depth research to determine how it can modify the magnetoelectric coupling of this hybrid multiferroic system.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3