Abstract
TiO2 nanotube arrays (TNAs) have been studied for photoelectrochemical (PEC) water splitting. However, there are two major barriers of TNAs, including a low photo-response and the fast charge carrier recombination in TNAs, leading to poor photocatalytic efficiency. Through a comparison of MoS2/TNAs and g-C3N4/TNAs, it was found that TNAs modified with MoS2 and g-C3N4 exhibited a current density of, respectively, 210.6 and 139.6 μA·cm−2 at an overpotential of 1.23 V vs RHE, which is 18.2 and 12 times higher than that of pure TNAs under the same conditions. The stability of the MoS2/TNAs heterojunction is higher than that of g-C3N4/TNAs.
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献