Abstract
In the present study Ar+ cluster ions accelerated by voltages in the range of 5–10 kV are used to irradiate single crystal ZnO substrates and nanorods to fabricate self-assembled surface nanoripple arrays. The ripple formation is observed when the incidence angle of the cluster beam is in the range of 30–70°. The influence of incidence angle, accelerating voltage, and fluence on the ripple formation is studied. Wavelength and height of the nanoripples increase with increasing accelerating voltage and fluence for both targets. The nanoripples formed on the flat substrates remind of aeolian sand ripples. The ripples formed at high ion fluences on the nanorod facets resemble well-ordered parallel steps or ribs. The more ordered ripple formation on nanorods can be associated with the confinement of the nanorod facets in comparison with the quasi-infinite surface of the flat substrates.
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献