Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

Author:

Croshaw JeremiahORCID,Dienel ThomasORCID,Huff TaleanaORCID,Wolkow Robert

Abstract

The combination of scanning tunnelling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) allows enhanced extraction and correlation of properties not readily available via a single imaging mode. We demonstrate this through the characterization and classification of several commonly found defects of the hydrogen-terminated silicon (100)-2 × 1 surface (H–Si(100)-2 × 1) by using six unique imaging modes. The H–Si surface was chosen as it provides a promising platform for the development of atom scale devices, with recent work showing their creation through precise desorption or placement of surface hydrogen atoms. While samples with relatively large areas of the H–Si surface are routinely created using an in situ methodology, surface defects are inevitably formed reducing the area available for patterning. By probing the surface using the different interactivity afforded by either hydrogen- or silicon-terminated tips, we are able to extract new insights regarding the atomic and electronic structure of these defects. This allows for the confirmation of literature assignments of several commonly found defects, as well as proposed classifications of previously unreported and unassigned defects. By combining insights from multiple imaging modes, better understanding of their successes and shortcomings in identifying defect structures and origins is achieved. With this, we take the first steps toward enabling the creation of superior H–Si surfaces through an improved understanding of surface defects, ultimately leading to more consistent and reliable fabrication of atom scale devices.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3