Abstract
In this study, a dual phase composite (CSO-FC2O) consisting of 60 vol % Ce0.8Sm0.2O1.9 as oxygen-conductive phase and 40 vol % FeCo2O4 as electron-conductive phase was synthesized. TEM measurements showed a relatively pure dual-phase material with only minor amounts of a tertiary (Sm,Ce)(Fe,Co)O3 perovskite phase and isolated residues of a rock salt phase at the grain boundaries. The obtained material was used as a model to demonstrate that a combination of polarization relaxation measurements and Kelvin probe force microscopy (KPFM)-based mapping of the Volta potential before and after the end of polarization can be used to determine the chemical diffusion coefficient of the ceria component of the composite. The KPFM measurements were performed at room temperature and show diffusion coefficients in the range of 3 × 10−13 cm2·s−1, which is comparable to values measured for single-phase Gd-doped ceria thin films using the same method.
Funder
Deutsche Forschungsgemeinschaft
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献