Abstract
AFM sharp tips are used to characterize nanostructures and quantify the mechanical properties of the materials in several areas of research. The analytical results can show unpredicted errors if we do not know the exact values of the AFM tip radius. There are many techniques of in situ measurements for determining the actual AFM tip radius, but they are limited to uncoated tips. This paper presents an alternative and simple method to determine the radii of coated tips and an uncoated tip. Pt-coated, Cr/Au-coated, and uncoated Si tips were used to scan a calibration standard grating in AFM contact mode with sub-nanonewton load to obtain the curved scan profile of the edge corner of the grating structure. The data points of the curved profile of each tip were fitted with a nonlinear regression function to estimate the curvature radius of the tip. The results show that the estimated radius of the coated tips is in the range of nominal values provided by the tip manufacturer, while the estimated radius of the uncoated Si tip is bigger than the nominal radius because of tip blunting during the scan. However, this method yields an accurate estimate of the tip radius with a low root mean squared error of the curve fitting results.
Funder
Texas A&M Engineering Experiment Station Office, Texas A&M University, College Station, Texas, USA
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science