Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

Author:

Joschko MaximilianORCID,Fotue Wafo Franck YvanORCID,Malsi Christina,Kisić DaniloORCID,Validžić IvanaORCID,Graf ChristinaORCID

Abstract

Sb2S3 is a promising nanomaterial for application in solar cells and in the fields of electronics and optoelectronics. Herein, Sb2S3 nanoparticles were prepared via the hot-injection approach. In contrast to earlier work, the reaction temperature was decreased to 150 °C so that the reaction was slowed down and could be stopped at defined reaction stages. Thereby, the formation mechanism of the nanomaterial and the associated kinetics could be revealed. Based on morphological and structural analyses, it is suggested that seed particles (type 0) formed immediately after injecting the antimony precursor into the sulfur precursor. These seeds fused to form amorphous nanoparticles (type I) that contained a lower percentage of sulfur than that corresponding to the expected stoichiometric ratio of Sb2S3. The reason for this possibly lies in the formation of an oxygen- or carbon-containing intermediate during the seeding process. Afterward, the type I nanoparticles aggregated into larger amorphous nanoparticles (type II) in a second hierarchical assembly process and formed superordinate structures (type III). This process was followed by the crystallization of these particles and a layer-like growth of the crystalline particles by an Ostwald ripening process at the expense of the amorphous particles. It was demonstrated that the kinetic control of the reaction allowed tuning of the optical band gap of the amorphous nanoparticles in the range of 2.2–2.0 eV. On the contrary, the optical band gap of the crystalline particles decreased to a value of 1.7 eV and remained constant when the reaction progressed. Based on the proposed formation mechanism, future syntheses for Sb2S3 particles can be developed, allowing tuning of the particle properties in a broad range. In this way, the selective use of this material in a wide range of applications will become possible.

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3