Author:
Zhang Shengming,Wang Xuhui,Li Yan,Mu Xuemei,Zhang Yaxiong,Du Jingwei,Liu Guo,Hua Xiaohui,Sheng Yingzhuo,Xie Erqing,Zhang Zhenxing
Abstract
We have successfully prepared iron oxide and nickel oxide on carbon nanotubes on carbon cloth for the use in supercapacitors via a simple aqueous reduction method. The obtained carbon cloth–carbon nanotube@metal oxide (CC-CNT@MO) three-dimensional structures combine the high specific capacitance and rich redox sites of metal oxides with the large specific area and high electrical conductivity of carbon nanotubes. The prepared CC-CNT@Fe2O3 anode reaches a high capacity of 226 mAh·g−1 at 2 A·g−1 with a capacitance retention of 40% at 40 A·g−1. The obtained CC-CNT@NiO cathode exhibits a high capacity of 527 mAh·g−1 at 2 A·g−1 and an excellent rate capability with a capacitance retention of 78% even at 40 A·g−1. The all-solid-state asymmetric supercapacitor fabricated with these two electrodes delivers a high energy density of 63.3 Wh·kg−1 at 1.6 kW·kg−1 and retains 83% of its initial capacitance after 5000 cycles. These results demonstrate that our simple aqueous reduction method to combine CNT and metal oxides reveals an exciting future in constructing high-performance supercapacitors.
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献